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YAG-Ce, Nd, and Yb phosphors with a triple-doped system are prepared by conventional solid-state
reaction method. The fluorescence emission and excitation spectra are measured and analyzed. The
influences of Yb3+ doping concentration on the emission of Yb3+ and Nd3+ in YAG-Ce, Nd, and Yb are
studied. The fluorescence decay spectra, lifetime, and energy transfer efficiency of Ce3+ in different host
materials of YAG-Ce and Yb, and YAG-Ce, Nd, and Yb are also compared. Furthermore, the trends of
fluorescence decay spectra and the lifetimes of Nd3+ and Yb3+ in YAG-Ce, Nd, and Yb with the increase
of Yb3+concentration are discussed. Results indicate that YAG-Ce, Nd, and Yb are good candidates for
downconverting phosphor, with energy transfer efficiency reaching as high as 82.8%.
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Trivalent rare earth (RE3+) ion-doped luminescent ma-
terials receive constant attention due to their exten-
sive applications, especially in phosphors for white light-
emitting diodes (LEDs), displays, and optical amplifiers
in telecommunication. They are also used in photovoltaic
cells by direct conversion of solar energy to meet the long-
term energy demand. The strongest emission of the solar
spectrum is about 350 to 550 nm. Trupke et al.[1] demon-
strated that the optimum underlying solar cell band gap
was close to 1.1 eV (∼1 100 nm). Although crystal silicon
(c-Si) solar cells dominate the market[2], their low effi-
ciency of about 29%[3] restricts further application, which
is mainly caused by the mismatch between the incident
solar spectrum and the spectral response of solar cells[1,4].
Downconverting phosphor by converting one photon of
high energy into two photons of lower energy is a promis-
ing technique for improving solar cell efficiency[5,6].

Based on energy match with Si solar cell, Yb3+with
intense emission peak at 1 029 nm and Nd3+ with emis-
sion peak at 1 064 nm are good candidates. RE ion pairs,
such as Tb3+, Tm3+, Pr3+-Yb3+, and Eu3+-Nd3+, re-
portedly enhance the cells’ efficiency[7−10]. However, due
to the partly forbidden f→f transition of the above sensi-
tizer ions, their luminescence intensities are rather weak
and their peak bandwidths are narrow. Unlike other RE
ions, Ce3+ with allowed 5d→4f transition could be a good
sensitizing ion. More importantly, the emission energy of
5d→4f matches about twice the energy of 2F5/2 →

2F7/2

transition of Yb3+. Lin et al.[11] reported on Yb-doped
Ce0.03Yb3xY(2.97−3x)Al5O12 transparent ceramics. The
energy transfer was demonstrated by excitation, emis-
sion, and time-resolved luminescence. Ce and Yb co-
doped ceramics may have practical applications in en-
hancing the conversion of crystalline Si solar cells due
to the 175.4% quantum yield. Such phenomenon has
also been reported in single crystals[12] and phosphors[13].
The energy transfer from Ce3+to Nd3+ in the YAG ma-

trix was experimentally studied by Meng et al.[14,15]. Un-
der 476-nm excitation, YAG-Ce and Nd produce strong
NIR emission with high quantum yield. Consequently,
energy transfer from Ce3+ to Yb3+ and from Ce3+ to
Nd3+ occurs. This finding prompts us to study the pos-
sible energy transfer with a process of Ce3+, namely,
5d→Nd3+: 2G9/2 →Yb3+: 2F5/2, which may develop
better NIR fluorescence phosphor in a triple-doped sys-
tem and become a promising candidate for improving
solar cell efficiency.

On this premise, Ce, Nd, and Yb co-doping in YAG
phosphors are investigated in this letter. The energy
transfer is evaluated by the emission and excitation spec-
tra, fluorescence decay spectra, decay lifetime, and en-
ergy transfer efficiency. The dependence of Yb3+ concen-
tration on the emission of Yb3+ and Nd3+ and the decay
lifetime of Ce3+, Nd3+, and Yb3+ are also reported.

YAG-Ce, Nd, and Yb phosphors with various doping
ions concentrations were fabricated by conventional solid-
state reaction. Table 1 lists the composition of all the
samples. The raw materials of Y2O3, Nd2O3, CeO2,
Yb2O3, and Al2O3 with 99.999% purity were weighted
according to Table 1, vigorously stirred in alcohol for 24
h, and then dried in air at 80 ◦C. The obtained samples
were ground and transferred into a small alumina cru-
cible covered with an outer crucible filled with sufficient
graphite powder. Finally, the samples were calcined in
a furnace at 1 500 ◦C for 24 h in carbon-reducing at-
mosphere. All of our samples were fabricated under the
same condition.

Optical spectroscopy, including fluorescence emission,
excitation spectra, fluorescence decay spectra, and life-
time of the samples, were obtained by using a spectropho-
tometer (FP-6500, JASCO, Japan). All measurements
were performed at room temperature.

Figure 1 shows the XRD patterns of YAG-Ce0.05, YAG-
Ce0.05Yb0.02, and YAG-Ce0.05Yb0.02Nd0.05. All the pat-
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Table 1. Composition of all the Samples

Sample Composition

A YAG-Ce0.05

B YAG-Ce0.05Nd0.05

C YAG-Ce0.05Yb0.02

D YAG-Ce0.05Yb0.1

E YAG-Ce0.05Yb0.04

F YAG-Ce0.05Yb0.01Nd0.05

G YAG-Ce0.05Yb0.02Nd0.05

H YAG-Ce0.05Yb0.04Nd0.05

I YAG-Ce0.05Yb0.08Nd0.05

J YAG-Ce0.05Yb0.1Nd0.05

K YAG-Ce0.05Yb0.15Nd0.05

L YAG-Ce0.05Yb0.2Nd0.05

M YAG-Ce0.05Yb0.25Nd0.05

Fig. 1. XRD patterns of YAG-Ce0.05, YAG-Ce0.05Yb0.02,
and YAG-Ce0.05Yb0.02Nd0.05 phosphors.

terns are identical to that of cubic YAG (JCPDS 33-
0040). Thus, the as-synthesized samples are generally of
a single phase.

Emission spectra of YAG-Ce0.05, YAG-Ce0.05Nd0.05,
YAG-Ce0.05Yb0.02, and YAG-Ce0.05Yb0.02Nd0.05 under
440-nm excitation are plotted in Fig. 2. The emis-
sion located at 550 nm is attributed to 5d→4f of Ce3+.
Although these samples have similar Ce3+-doping con-
centration, intensities of 5d→4f of Ce3+ emission are
different. The intensity of YAG-Ce0.05 is the strongest,
followed by that of YAG-Ce0.05Yb0.02. This result is
caused by the energy transfer process of Ce3+, namely,
5d→Yb3+: 2F5/2+Yb3+: 2F5/2, which weakens the emis-

sion of Ce3+[13]. With the addition of Nd3+, the intensity
is much weaker, suggesting that higher sensitization ef-
ficiency exists between Ce3+ and Nd3+ than between
Ce3+ and Yb3+ in YAG. Due to the decline of the num-
ber of excited-state Ce3+, intensity degradation occurs.
Some hollows are observed in the spectrum of YAG-
Ce0.05Nd0.05 and YAG-Ce0.05Yb0.02Nd0.05 between 500
and 650 nm, which are not observed in YAG-Ce0.05 and
YAG-Ce0.05Yb0.02. These hollows are related to the vis-
ible absorption of Nd3+[15]. The competitive absorption
of Nd3+ and Yb3+ in YAG-Ce0.05Yb0.02Nd0.05 is likely
to hinder the energy transfer from Ce3+ to Nd3+ and
Yb3+. Consequently, its emission intensity is a little
stronger than that of YAG-Ce0.05Nd0.05.

Figure 3 shows the NIR fluorescence spectra of
YAG-Ce0.05Yb0.02, YAG-Ce0.05Nd0.05, and YAG-
Ce0.05Yb0.02Nd0.05 by 440-nm excitation. The emis-
sion peaks at around 900 and 1 060 nm correspond
to the Nd3+ emission from 4F3/2 to 4I9/2 and 4I11/2,

respectively[16]. The observation is a convincing evidence
that energy transfer occurs from the relaxed lowest 5d1

energy band of Ce3+ to the 2G7/2 of Nd3+, and then

the transferred electrons relax to 4F3/2 and decay to the
4I9/2 and 4I11/2 of Nd3+[14]. According to the emission
intensities, the energy transfer is very efficient. However,
only one weak emission peak is observed at 1 029 nm
in the spectra of YAG-Ce0.05Yb0.02, which corresponds
to the transfer from 2F5/2 to 2F7/2 of Yb3+. As seen in
Fig. 2, the energy transfer efficiency is much lower than
that of YAG-Ce0.05Nd0.05. In the spectrum of YAG-
Ce0.05Yb0.02Nd0.05, the intensity of the emission peak at
1029 nm is about four times stronger than that of YAG-
Ce0.05Yb0.02. Nd3+ has a sensitized role for Yb3+. The
possible energy transfer path is Nd3+: 2G9/2+ Yb3+:
2F7/2 →Nd3+: 4F3/2 +Yb3+: 2F5/2, Nd3+: 4F3/2+

Yb3+: 2F7/2 →Nd3+: 4I11/2 +Yb3+: 2F5/2
[17].

The excitation spectra of YAG-Ce0.05, YAG-
Ce0.05Yb0.1, and YAG-Ce0.05Yb0.1Nd0.05 are shown in
Fig. 4. Based on monitoring results at 570 nm, strong
excitation peaks at about 450 and 330 nm are observed
in the spectrum of YAG-Ce0.05. Similar excitation peaks
are also observed in the other two samples (by monitor-
ing at 1 029 nm), except that their intensities are weaker.
The similarity in the shape of the excitation peak could
be ascribed to the efficient energy transfer from Ce3+ to
Nd3+ and from Ce3+ to Yb3+[15,17], which declines in the
excited-state numbers and deteriorates the emission of

Fig. 2. Emission spectra of YAG-Ce0.05, YAG-Ce0.05Nd0.05,
YAG-Ce0.05Yb0.02, and YAG-Ce0.05Yb0.02Nd0.05 (λex =
440 nm).

Fig. 3. NIR fluorescence spectra of YAG-Ce0.05Yb0.02, YAG-
Ce0.05Nd0.05, and YAG-Ce0.05Yb0.02Nd0.05 by 440-nm exci-
tation.
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Fig. 4. Excitation spectra of YAG-Ce0.05 (λem= 570
nm), YAG-Ce0.05Yb0.1, and YAG-Ce0.05Yb0.1Nd0.05 (λem=
1 029 nm).

Fig. 5. Simplified energy level diagram with possible energy
transfer process in YAG-Ce, Nd, and Yb.

Fig. 6. Fluorescence intensity of Yb3+ emission (1029 nm)
and Nd3+ (1064 nm) as a function of Yb3+ doping concentra-
tion in YAG-Ce, Nd, and Yb.

Table 2. Calculated Energy Transfer Efficiency ηET

as a Function of Yb3+Doping Concentration in
YAG-Ce and Yb

Yb3+Concentrations in YAG-Ce

and Yb (at.-%)
2 4 10

ηET(%) 8.8 15.8 26.6

Ce3+. The intensity at 450 nm of YAG-Ce0.05Yb0.1Nd0.05

is much stronger than that of YAG-Ce0.05Yb0.1. The en-
ergy transfer from Nd3+ to Yb3+ enhances the excitation
spectrum, and the possible path is shown in Fig. 5. Ex-
citation of Nd3+ occurs mainly via energy transfer from
Ce3+:5d to Nd3+:4G7/2+

2G7/2. After excitation of the

5d state of Ce3+, some electrons can transfer to the
ground state of 4f, producing broadband emission. By
contrast, other electrons transfer to the excitedlevel of
Nd3+. G7/2 level corresponds to the excitation band

at 530 nm and 2G7/2 level corresponds to the excitation

band at 592 nm[14]. By further relaxing to a lower-energy
level, an emission peak at 890 nm (4F3/2 →

4I9/2) can
be observed, as shown in Fig. 4. Beyond that, other

electrons transfer to the excited state 2F5/2 of Yb3+and

the following emission 2F5/2 →
2F7/2 occurs due to the

energy match between 2G9/2 →
4F3/2 and 2F5/2 →

2F7/2.

Table 3. Calculated Energy Transfer Efficiency
ηET as a Function of Yb3+ Doping

Concentrations in YAG-Ce, Nd, and Yb

Concentrations in

YAG-Ce, Nd, and Yb 0 1 2 4 10 20 25

(at.-%)

ηET(%) 67.6 72.2 70.1 73.3 73.9 79.8 82.8

Fig. 7. (a) Colored line is the fitting result of the fluorescence
decay curves of Ce3+ emission (560 nm) in YAG-Ce and Yb.
The inset is the lifetime of Ce3+in YAG-Ce and Yb as the
concentration of Yb3+ increases. (b), (c), and (d) are the
fitting results of the fluorescence decay curves of Ce3+ emis-
sion (560 nm), Nd3+ emission (1 064 nm), and Yb3+emission
(1 029 nm), respectively. The insets are their lifetimes with
different Yb3+ concentrations.
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Figure 6 portrays the dependence of Yb3+ (1 029 nm)
and Nd3+ (1 064 nm) emissions on Yb3+ doping con-
centration for YAG-Ce, Nd, and Yb. As Yb3+ con-
centration increases from 1% to 25%, the luminescence
of Nd3+ monotonically weakens, whereas the intensity
of Yb3+ first reaches a maximum at 10% Yb3+ and
then decreases when Yb3+ concentration is further in-
creased. This phenomenon indicates the energy transfer
from Nd3+ to Yb3+. Higher Yb3+ concentration pro-
motes the transfer path and accelerates the decay process
of Nd3+ (4F3/2 →

4I11/2).

The energy transfer from Ce3+to Yb3+ is further conf-
irmed by the decay lifetime recorded for the Ce3+ emi-
ssion at 560 nm, Nd3+ emission at 1064 nm, and Yb3+

emission at 1029 nm with different Yb3+ concentrations
(Fig. 7). The colored lines are the fitting results of the
fluorescence decay curves. The decays of Ce3+ emission
at 560 nm in YAG-Ce0.05 can be described by a single ex-
ponential. When the samples are co-doped with Yb3+,
the faster decays of Ce3+ can also be described by a sin-
gle exponential. The lifetimes of Ce3+emission decrease
upon increase of Yb3+ concentration. These observations
confirm that energy transfer occurs from Ce3+to Yb3+ in
YAG-Ce and Yb, but the efficiency is very low. In Fig.
7(b), the decays are no longer single exponential. The
decays in YAG-Ce, Nd, and Yb decrease more rapidly
than those in YAG-Ce and Nd. The lifetime of Ce3+in
YAG-Ce, Nd, and Yb is remarkably shorter than that
in YAG-Ce and Yb. The gradual decline of Nd3+decays
with the increase of Yb3+ clearly indicates that energy
transfer from Nd3+ to Yb3+ occurs, which is consistent
with the intensity of Nd3+emission (Fig. 6). As observed
in Figs. 7(c) and (d), the decreased lifetime of Nd3+

emission at 1 064 nm in YAG-Ce, Nd, and Yb is the re-
sult of the energy transfer (Nd3+

→Yb3+), whereas the
reduction of the lifetime of Yb3+ emission at 1 029 nm
is attributed to the reduced concentration. The lifetime
decrease of Nd3+ further verifies the presence of energy
transfer (Nd3+

→Yb3+). The mechanism of concentra-
tion quenching can be described as follows: resonant ex-
citation energy migration between Yb3+ occurs, and this
process makes part of the energy transferred to quench-
ing centers evolve into impurities or defects. If the con-
centration of Yb3+ increases, this energy migration will
become faster[18].

We estimated the Ce-Yb energy transfer efficiency ηET

by using the following equation[13]:

ηET = 1 − τx/τ0,

where τx and τ0 represent the decay lifetimes of Ce3+ at
560 nm of samples with Yb3+ doping concentration of x
and x= 0, respectively. Tables 2 and 3 list the ηET of
YAG-Ce and Yb and YAG-Ce, Nd, and Yb, which exhibit
a monotonous increase with the doping concentration of
Yb3+. The corresponding ηET of YAG-Ce, Nd, and Yb
is larger than that of YAG-Ce and Yb when they have
the same Yb3+doping concentration. The ηET of YAG-
Ce and Nd is lower than that in triple-doped systems.
The conclusion that Nd3+ improves the energy transfer
from Ce3+to Yb3+can be drawn based from these ob-
servations. With a high efficiency of 82.8%, YAG-Ce,
Nd, and Yb phosphors may find potential application in
improving the efficiency of silicon-based solar cells.

In conclusion, the energy transfer from Ce3+ to Yb3+,
from Ce3+ to Nd3+, and from Nd3+ to Yb3+, as well
as the sensitized luminescence of Yb3+in YAG-Ce, Nd,
and Yb phosphors, are investigated by excitation spectra,
emission spectra, and fluorescence decay spectra. Results
indicate that Nd3+ can function as a sensitizer ion for
Yb3+, improving the energy transfer from Ce3+ to Yb3+.
The possible path is Ce3+: 5d→Nd3+: 2G9/2 →Yb3+:
2F5/2. The energy transfer efficiency of Ce3+ reaches as
high as 82.8% in YAG-Ce, Nd, and Yb, which is much
higher than that in YAG-Ce and Nd and YAG-Ce and
Yb. The intense NIR emission, which is in the spec-
tral response wavelength of the solar cells, can be easily
excited by visible light (440 nm) in the triple-doped
phosphor. Therefore, YAG-Ce, Nd, and Yb with high
energy transfer efficiency may be a promising candidate
for phosphor downconversion to optimize Si solar cell
performance.
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